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Exact solution of free in-plane vibrations of circular arches of uniform cross-section is
given by considering axial extension, transverse shear and rotatory inertia effects. In
contrast with Kirchhoff’s beam theory the restrictions of perpendicular cross-section and
inextensible arc length are removed. The principal axes of the cross-section are assumed
to coincide with the principal normal and binormal vectors of the centerline of the beam.
A solution procedure is applied to obtain the fundamental matrix for various end
conditions. Natural frequencies and mode shapes are given in figures and tables.
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1. INTRODUCTION

The vibrational behavior of curved beams is of strong industrial interest and has received
considerable attention in recent years. The elementary Bernoulli-Euler equation of motion
of beams is derived on the assumption that the deflection of beams are due to bending
only and that transverse shear, rotatory inertia and axial extension effects are negligible.
This simplifies the analysis considerably and can be recognized as adequate for usual
engineering problems. The classical governing equations of in-plane and out-of-plane
vibrations of curved beams are given together with their solutions in the book by Love
[1].

Afterwards, many other researchers calculated the natural frequencies of in-plane and
out-of-plane vibrations of circular arches based on the classical beam theory in which the
foregoing effects are not considered. Although the simple cases are treated by using the
exact method, Ritz, Galerkin and finite element methods are employed extensively when
complicated cases such as non-uniform cross-sections are of concern.

It is well-known that for beams having large cross-sectional dimensions in comparison
to their lengths, and for beams in which high-frequency modes of vibration are required,
the Timoshenko theory which takes into account the rotatory inertia and shear effects gives
a better approximation to the actual beam behavior. Considerable research has been
devoted to study the effects of rotatory inertia and shear on straight beam vibrations [2].
In the case of curved beams, Seidel and Erdelyi [3] found the frequency equation for a
closed ring under the assumption of sinusoidal mode shapes. Rao and Sundararajan [4]
extended the work of Seidel and Erdelyi to circular arches, free complete circular rings and
periodically radially supported complete rings. Later, Bickford and Storm [5] used the
transfer matrix technique to determine the small amplitude motion of a constant curvature
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prismatic bar. Further analytical treatments of in-plane vibration of curved beams with
transverse shear and rotatory inertia effects included are reported by Wang and Guilbert
[6] and by Rosettos and Perl [7].

In one of the earliest finite element treatments of Timoshenko beams, Kapur [8] develops
a finite element based on the Timoshenko beam theory for straight beams. Subsequently,
a variety of elements have been presented for dynamic analysis of straight and curved
Timoshenko beams amongst which are those of references [9–20].

Kang et al. [21] apply the differential quadrature method in the computation of the
eigenvalues of the equations of motion governing in-plane and out-of-plane vibrations of
circular arches based on the Timoshenko beam theory.

All of the investigations reviewed above neglect the extension of the neutral fibre in order
to simplify the analysis. The constraint of inextensionality may be justified in situations
in which the extensional coupling arises only in higher frequencies. Lin and Soedel [22]
have shown however, that extensional coupling effects can be significant in the case of thick
rings. Chidamparam and Leissa [23] investigate the influence of centerline extensibility on
the free vibration of loaded rings and arches. They find that centerline stretching during
the vibratory motion causes a decrease in the vibration frequencies, and that this decrease
may be quite large, especially for shallow arches. However, they ignore the rotatory inertia
and shear effects. Issa et al. [24] analytically find the dynamic stiffness matrix for circular
curved members, including the effects of shear deformation, rotatory inertia and extension
of the centerline, for estimating the natural frequencies of continuous beams undergoing
in-plane vibrations. Rossi and Laura [25] constitute a second group considering all of the
aforementioned effects, to the authors’ knowledge. They have studied the possibility of
attaining dynamic stiffening of simply supported and clamped arches by employing the
finite element method.

The foregoing review shows that only a few works have taken into account the complete
effects namely transverse shear, rotatory inertia and centerline extension. All of them use
numerical methods and give approximate results. The objective of the present study is to
find an exact solution to the governing equations of motion of circular curved beams
having uniform cross-sections with account taken of transverse shear, axial extension and
rotatory inertia effects. It is still possible to ignore unimportant effects by vanishing the
related terms in the coefficients matrix for particular cases. Owing to the exact theory
presented herein, one will be able to avoid the errors arising from approximate methods
and computational procedure.

2. ANALYSIS

2.1.     

The in-plane behavior of elastic curved beams with account taken of axial and shear
deformations is formulated by several authors as:

dw/df= u+(r(f)/EA)Rt , du/df=−w+(r(f)/GA/kn )Rn +Vb ,

dVb /df=(r(f)/EIb ) Mb ,

dMb /df=−r(f)Rn − r(f)mb , dRt /df=Rn − r(f)pt ,

dRn /df=−Rt − r(f)pn , (1)

where Rn , Rt are normal and tangential components of internal force; Mb is the internal
moment about the binormal axis; pn , pt are normal and tangential components of external
distributed force; mb is the external distributed moment about the binormal axis; u, w are
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normal and tangential displacements; Vb is the rotation angle about the binormal axis; E, G
are Young’s and shearing moduli; A is the cross-sectional area; Ib is the moment of inertia
with respect to the binormal axis; kn is the factor of shear distribution along the normal
axis; f is the angular co-ordinate; r is the radius of curvature of undeformed beam axis.

2.2.    

The equations of motion can be derived by means of d’Alembert principle. For free
vibration, inertia forces and moments are considered as external effects. That is

pn =−m 12u/1t2, pt =−m 12w/1t2, mb =−(m/A)Ib 12Vb /1t2, (2)

where m is the mass per unit length and t is the time. Substituting equations (2) into
equations (1) and assuming that the motion is harmonic with angular frequency v, the
governing equations of motion are obtained to be

dw/df= u+(r(f)/EA)Rt , du/df=−w+(r(f)/GA(f)/kn )Rn + r(f)Vb ,

dVb /df=(r(f)/EIb (f))Mb , dMb /df=−r(f)Rn − r(f)m(f) (Ib (f)/A(f))v2Vb ,

dRt /df=Rn − r(f)m(f)v2w,
dRn

df
=−Rt − r(f)m(f)v2u. (3)

2.3.  

Equations (3) are simultaneous linear differential equations of the first order with
variable coefficients. They can be written in matrix form as

dy� /df=A(f)y� (f), (4)

where

w 0 1 0 0 r/EIb 0K L K L
G G G Gu −1 0 r 0 0 rkn /GA
G G G GVb 0 0 0 r/EIb 0 0
G G G Gy� (f)=

Mb
and A=

0 0 rm(Ib/A)v2 0 0 −r
.

G G G G
Rt rmv2 0 0 0 0 1G G G G

k l k lRn 0 rmv2 0 0 −1 0

Figure 1. Circular curved beam of uniform cross-section.
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Figure 2. The lowest four modes of 180° circular arches with hinged ends.

For these homogeneous equations it is not generally possible to find an exact solution
of the form y� (f)=Y(f, f0)y� (f0) where Y(f, f0) is the fundamental matrix and y� (f0) is
the initial values vector in terms of the reference co-ordinate f0. But, an exact solution
does exist for the particular case that all components of A are constant. This corresponds
to circular curved beams of uniform cross-sections.

The solution of equation (4) for free in-plane vibrations of circular curved beams with
uniform cross-sections is

y� (f)= eAfy� (f0), (5)

provided the initial values vector y� (f0) is known. A is a 6×6 matrix and the term eAf in
equation (5) can be expressed exactly as

eAf = a0 I+ a1 A+ a2 A2 + a3 A3 + a4 A4 + a5 A5, (6)

Figure 3. The lowest four modes of 180° circular arches with clamped ends.
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Figure 4. The lowest four modes of 180° circular arches with clamped and hinged ends.

where ak (k=0, 1, . . . , 5) are unknown coefficients and I is the unit matrix. The
eigenvalues li (i=1, 2, , . . . , 6) of A also satisfy the same equation according to the
Cayley–Hamilton theorem:

eli f = a0 + a1 li + a2 l2
i + a3 l3

i + a4 l4
i + a5 l5

i . (7)

The last expression gives six simultaneous linear equations in terms of ak . By solving
these equations for ak and by substituting them into equation (6), eAf is found.

As known, the eigenvalues of A can be evaluated by setting det (A− lI)=0. This leads
to the polynomial characteristic equation

l6 +$2+ b0 kn

GA
+

2
EA1%l4 +$01−

bkn

GA101−
b

EA1+
b

EA 02+
bkn

GA
+

b

EA1−
br2

EIb%l2

Figure 5. The lowest four modes of 180° circular arches with clamped and free ends.
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T 1

Frequency coefficient c= v̄R2u2zm/EI for uniform fixed–fixed 90° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 55·74 55·73434 55·82526 55·3825 55·7845 55·3434
2 103·6 103·5750 106·7298 102·5375 106·5514 102·3868
3 191·9 191·8594 193·0367 189·0707 192·4118 188·4994
4 220·3 220·3039 284·8169 219·4166 283·4113 219·1514
5 305·1 305·1024 409·8742 300·4369 406·868 299·1958

75 1 55·66 55·66338 55·82526 55·04423 55·75308 55·97678
2 100·3 100·3451 106·7298 98·73356 106·4131 98·5094
3 175·7 175·6945 193·0358 175·1748 191·9284 174·9116
4 190·9 190·8488 284·8349 186·0415 282·3079 185·1081
5 296·2 296·1725 409·8074 286·8961 404·5627 284·7500

50 1 55·46 55·45927 55·82523 54·10526 55·6631 53·96596
2 88·31 88·30372 106·7301 86·4506 106·0211 86·19077
3 135·5 135·5172 193·0345 133·2986 190·5714 132·7272
4 187·2 187·1628 284·8229 177·5005 279·2730 175·8392
5 270·8 270·8472 409·824 269·6564 398·2587 265·8141

+01−
b

EA1$r2 +01−
bkn

GA1 In

A% b

EIb
=0. (8)

where b= mv2r2. By introducing x= l2, equation (8) reduces to a cubic equation in terms
of x and the eigenvalues are found by means of Cardan formulas.

2.4.      

To specify the solution vector y� (f) in equation (5), the initial values vector y� (f0) must
be obtained as well as the term eAf. The six elements of it can be found by considering
the following boundary conditions (e.g. for end B in Figure 1):

Hinged end: w(f2)=0; u(f2)=0; Mb (f2)=0,

T 2

Frequency coefficient c= v̄R2u2zm/EI for uniform fixed–fixed 120° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 51·92 51·91417 51·96933 51·72205 51·9514 51·70454
2 102·6 102·6437 103·5759 102·0216 103·4857 101·9366
3 187·6 187·6238 188·3600 186·0336 188·0326 185·7236
4 272·8 272·8042 281·3077 269·8413 280·5406 269·2141
5 401·2 401·1827 404·9757 395·2590 403·2929 393·7767

75 1 51·87 51·87116 51·96936 51·5317 51·93761 51·50119
2 101·9 101·8595 103·5761 100·7849 103·4153 100·6416
3 187·0 187·0193 188·3598 184·2492 187·7782 183·7216
4 257·9 257·9222 281·291 254·3053 279·9438 253·5605
5 335·3 335·3554 404·9316 333·2775 402·0865 332·4988

50 1 51·75 51·74817 51·96935 50·99781 51·89786 50·93224
2 99·31 99·30886 103·5760 97·12469 103·2155 96·85173
3 185·1 185·1357 188·3591 179·2359 187·0569 178·1998
4 199·7 199·7129 281·2906 198·4752 278·2554 198·0489
5 296·0 296·0073 404·9476 285·3423 398·4590 282·9555
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T 3

Frequency coefficient c= v̄R2u2zm/EI for uniform fixed–fixed 150° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 47·66 47·65777 47·69263 47·54103 47·68403 47·53256
2 99·32 99·31750 99·71315 98·91841 99·66232 98·86906
3 182·4 182·4143 182·9127 181·3956 182·7209 181·2108
4 274·0 274·0332 276·8773 271·9680 276·4228 271·5375
5 396·8 396·7676 399·2021 392·9392 398·2357 391·9823

75 1 47·63 47·63072 47·69263 47·42400 47·6773 47·40912
2 99·0 99·00182 99·71302 98·30127 99·62241 98·21652
3 182·4 182·0143 182·9129 180·2288 182·5711 179·9086
4 274·0 271·1395 276·8839 267·6208 276·0648 266·9185
5 394·6 394·5508 399·2365 387·9395 397·4276 386·3414

50 1 47·55 47·55337 47·69262 47·09346 47·65828 47·06123
2 98·06 98·06049 99·71310 96·54452 99·51030 96·36843
3 180·8 180·8237 182·9117 176·9458 182·1451 176·2864
4 256·9 256·9427 276·8980 251·1634 275·0246 250·0629
5 342·3 342·3105 399·2101 339·8953 395·2179 338·9705

Clamped end: w(f2)=0; u(f2)=0; Vb (f2)=0,

Free end: Mb (f2)=0; Rt (f2)=0; Rn (f2)=0. (9)

Substituting them (3 for each end) into equation (5) yields six simultaneous linear
equations in terms of the initial values namely w0, u0, Vb0, Mb0, Rt0 and Rn0 at the reference
co-ordinate f0. For a non-trivial solution, the determinant of the homogeneous system
must vanish and this requirement will give the natural frequencies. Mode shapes are
specified by substituting the normalized initial values into equation (5). Also one can apply
the general method presented to some particular cases. That is, axial extension, shear or
rotatory inertia effects can be disregarded by taking A(1, 5)=0 or A(2, 6)=0 or
A(4, 3)=0, respectively.

T 4

Frequency coefficient c= v̄R2u2zm/EI for uniform fixed–fixed 180° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 43·25 43·25054 43·27261 43·17525 43·26822 43·17091
2 95·06 95·05805 95·26019 94·78901 95·23030 94·75567
3 176·5 176·5296 176·8814 175·8285 176·7601 175·7111
4 270·2 270·2342 271·6596 268·7898 271·3533 268·4875
5 391·1 391·0999 392·7842 388·4248 392·1123 387·7377

75 1 43·24 43·23337 43·27257 43·09991 43·26476 43·09223
2 95·90 94·89944 95·26026 94·41729 95·20651 94·36575
3 176·3 176·2534 176·8816 175·0154 176·6657 174·8113
4 269·0 269·0188 271·6630 266·4852 271·1114 265·9794
5 389·7 389·6890 392·7656 384·9726 391·6286 383·9120

50 1 43·19 43·18431 43·27259 43·88654 43·25500 42·86968
2 94·44 94·43909 95·26028 93·37788 95·13965 93·26808
3 175·5 175·4451 176·8800 172·7292 176·3978 172·2951
4 264·8 264·7849 271·6560 259·4751 270·4404 258·4766
5 384·9 384·8703 392·7889 374·9177 390·1025 372·7893
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T 5

Frequency coefficient c= v̄R2u2zm/EI for uniform hinged–hinged 90° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 33·92 33·91819 33·96056 33·85403 33·94027 33·83406
2 79·16 79·15683 79·95256 78·83498 79·83553 78·72588
3 151·5 151·4991 152·1705 150·4557 151·7202 150·0300
4 216·5 216·4780 237·9761 215·2670 236·8765 214·8133
5 261·7 261·79418 349·5550 260·5019 347·1565 259·7674

75 1 33·89 33·88529 33·96054 33·77174 33·92454 33·73672
2 78·45 78·43807 79·95260 77·88450 79·74484 77·70250
3 151·0 150·9628 152·1710 149·1410 151·3725 148·4183
4 174·4 174·4427 237·9736 174·1365 236·0272 173·9414
5 245·1 245·1234 349·5702 241·0977 345·2884 239·3448

50 1 33·79 33·79141 33·96053 33·53928 33·87970 33·46323
2 75·74 75·73439 79·95263 74·66271 79·48746 74·34122
3 122·0 122·0042 152·1706 121·7915 150·3921 121·4958
4 149·3 149·3262 237·9724 145·4444 233·6575 144·0231
5 238·9 238·8547 349·5635 229·7416 340·1951 226·3381

3. NUMERICAL EVALUATION AND CONCLUSIONS

The eigenvalues li of the matrix A have been calculated by reducing equation (6) to
Cardan form. In order to calculate the initial values, the reference co-ordinate f0 is set
to be zero. That is f0 =fC =0 (see Figure 1).

In Figures 2–5 are shown the lowest four modes of 180° circular arches with uniform
rectangular cross-sections and having various end conditions.

Tables 1–8 list the values of the dimensionless frequency parameter c= v̄R2u2zm/EI for
different slenderness ratios R/i where R is the radius of circular arch axis; i is the radius of
gyration of the cross-sectional area; v̄ is natural frequency and u is the opening angle of
the arch. In these tables, the values obtained by the present theory are compared to those
obtained by Wolf [26] for five modes and for two different boundary

T 6

Frequency coefficient c= v̄R2u2zm/EI for uniform hinged–hinged 120° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 30·36 30·36033 30·38414 30·32607 30·37580 30·31780
2 76·48 76·47634 76·74735 76·29374 76·68916 76·23734
3 147·8 147·7448 148·1501 147·1565 147·9144 146·9290
4 231·9 231·9183 234·5757 230·5152 233·9802 229·9762
5 343·4 343·3509 345·5157 340·4258 344·1400 339·1900

75 1 30·34 30·34179 30·38417 30·28106 30·36934 30·26647
2 76·27 76·25862 76·74730 75·93748 76·64407 75·83952
3 147·4 147·4271 148·1494 146·3900 147·7319 145·9973
4 228·5 228·4644 234·5747 226·1609 233·5163 225·3067
5 322·7 322·7145 345·4731 322·3364 343·1240 321·9759

50 1 30·29 30·28895 30·38416 30·15343 30·35080 30·12124
2 75·61 75·60040 76·74733 74·90006 76·51566 74·69487
3 146·5 146·4927 148·1494 144·2301 147·2168 143·4124
4 199·3 199·3012 234·5716 197·8177 232·2173 197·2652
5 248·1 248·1072 345·4819 244·1621 340·2842 242·4045
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T 7

Frequency coefficient c= v̄R2u2zm/EI for uniform hinged–hinged 150° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 26·43 26·43164 26·44557 26·41157 26·44185 26·40786
2 72·71 72·70510 72·83194 72·5900 72·80021 72·55874
3 143·1 143·1013 143·3676 142·7257 143·2317 142·5925
4 229·2 229·1988 230·3020 228·2831 29·9415 227·9351
5 339·2 339·1714 340·5330 337·2530 339·7403 336·4950

75 1 26·42 26·42079 26·44557 26·38523 26·43896 26·37866
2 72·62 72·60569 72·83188 72·40197 72·77554 72·34726
3 142·9 142·8942 143·3665 142·2300 143·1256 141·9974
4 228·3 228·2147 230·3036 226·6178 229·6597 226·0291
5 338·1 338·0243 340·5310 334·7154 339·1035 333·3854

50 1 26·39 26·38991 26·44555 26·31025 26·43072 26·29575
2 72·33 72·31761 72·83196 71·86615 72·70526 71·74772
3 142·3 142·2910 143·3665 140·8289 142·8241 140·3306
4 224·5 224·4704 230·3005 221·1423 228·8664 219·9901
5 333·9 333·9176 340·5504 327·1570 337·3432 324·5391

conditions. The numbered columns contain the frequency parameters obtained by the
present theory for the following cases:

(1) Axial extension and rotatory inertia effects are considered as in [26].
(2) None of the effects are considered.
(3) Transverse shear and axial extension effects are considered.
(4) Only the rotatory inertia effect is considered.
(5) All of the effects are considered (primary case studied here).

Wolf has found good results by using the finite element method. Although the axial
extension and rotatory inertia have been included, the shear deformation has been

T 8

Frequency coefficient c= v̄R2u2zm/EI for uniform hinged–hinged 180° circular arches

R/i Mode Ref. [26] (1) (2) (3) (4) (5)

100 1 22·37 22·36366 22·37183 22·35144 22·37009 22·34968
2 68·27 68·26015 68·33013 68·18234 68·31198 68·16436
3 137·8 137·7702 137·9536 137·5114 137·8689 137·4288
4 224·6 224·6107 225·2239 223·9718 224·9902 223·7427
5 334·0 333·9144 334·8891 332·6120 334·3664 332·0705

75 1 22·36 22·35735 22·37186 22·33560 22·36873 22·33250
2 68·22 68·20545 68·33013 68·06770 68·29790 68·03600
3 137·6 137·6271 137·9536 137·1696 137·8031 137·0236
4 224·1 224·1099 225·2238 222·9893 224·8065 222·5925
5 333·2 333·1781 334·9025 330·8272 333·9380 329·9577

50 1 22·34 22·33921 22·37183 22·29052 22·36482 22·28359
2 68·06 68·04909 68·33021 67·74172 68·25748 67·67219
3 137·2 137·2153 137·9534 136·2016 137·6155 135·8837
4 222·6 222·5628 225·2190 220·1100 224·2858 219·2887
5 330·9 330·8144 334·9015 325·7584 332·7567 323·9065
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Comparison of the results of [28] with those obtained by the present theory

Theoretical [28] Experimental [28] Present theory
(rad/s) (rad/s) (rad/s)

44·3 41 40·71

neglected in [26]. The tables also give the results of the various combinations of the effects
in case they are considered by the present theory.

It is readily seen that as R/i or u decreases, the frequency parameters become
progressively less accurate in the columns where some or all of the effects have been
neglected. This is more important in higher modes. The tables also show that the results
are slightly influenced by the boundary conditions and that the neglect of these effects is
to be avoided specially for the beams with clamped ends.

Table 9 shows the natural frequencies obtained by Den Hartog [27] and Heppler [17]
in comparison to those obtained by the present theory. Den Hartog’s results are less
accurate for small opening angles due to the neglect of transverse shear and rotatory inertia
as explained in reference [17]. But, it is interesting that considerable differences arise
between the results of Heppler and that of the present theory at large opening angles and
in higher modes, although all the effects are taken into account in [17]. This can be
attributed to taking a constant number (eight) of straight beam elements by Heppler. It
is obvious that increasing angles result in longer elements when the number of elements
are kept constant and this increases the errors specially in higher modes.

Tabarrok et al. [28] investigated a semi-circular cantilever arch with a uniform
rectangular cross-section by employing a seven element model. The shear, stretching and
rotatory inertia effects are taken into account. Table 10 shows their theoretical and
experimental results for the first mode with those obtained by the present theory. As can
be seen, the agreement between the computed and measured values is better when the
present theory is of concern even for the first mode. It is expected that the discrepancy
originated from seven element model will be worse in ascending modes.
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